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Tricritical scaling and renormalisation of @ operators in 
scalar systems near four dimensions 

I D Lawriet 
Baker Laboratory, Cornell University, Ithaca, New York 14853, USA 

Received 6 September 1978, in final form 8 November 1978 

Abstract. Renormalisation of a field theory model for tricritical behaviour in which the 
operator q56 is essential for thermodynamic stability is discussed in d = 4 - e  dimensions. 
The crossover scaling form of the equation of state is obtained explicitly to first order in z for 
both positive and negative values of the four-spin coupling constant. Orthodox scaling, 
involving Gaussian tricritical exponents, is obtained, but is shown to be physically inap- 
propriate in the ordered region of the symmetry plane. A reformulation of scaling, using 
classical tricritical exponents, is possible, but involves an additional parameter p with its 
own scaling exponent dp = - $(l -e ) .  This parameter, introduced by Sarbach and Fisher for 
the many-component, spherical model limit, is related to the coefficient of (Vd)* in the 
field-theoretic Hamiltonian. 

1. Introduction 

Modern studies of critical phenomena have revealed the existence of a wide variety of 
multicritical points, at which one or more critical loci terminate. In general, each locus 
is characterised by its own set of critical exponents, while the exponents of the 
multicritical point are quite distinct. Furthermore, there corresponds to each set of 
critical exponents a borderline d of spatial dimensionality, above which the exponents 
are correctly given by mean field theory, but which may be different for the different 
types of critical behaviour. This last feature occurs, for example, in certain quantum- 
mechanical or finite-sized systems (Lawrie and Fisher 1978, Lawrie 1978a, b and 
references therein), at Lifshitz points, associated with the onset of helical ordering 
(Hornreich er a1 1975), and at tricritical points (Riedel and Wegner 1973). Apart from 
a relatively small number of exactly soluble models, the most powerful tool presently 
available for the theoretical study of universal scaling behaviour near critical and 
multicritical points is the renormalisation group. An essential feature of this approach is 
the existence, for each type of asymptotic critical behaviour, of a fixed-point Hamil- 
tonian, which contains only a few relevant operators. The relevance or irrelevance of a 
given operator is normally strongly dependent on dimensionality. Consequently, when 
the borderline dimensionalities for two types of critical behaviour are different, there 
may be operators, over and above those directly responsible for the crossover, which, 
while they are irrelevant for one fixed point, are relevant or ‘dangerous’ (in the sense of 
Fisher 1974a) for the other. The necessity of including such operators in the Hamil- 
tonian can give rise to complications in the renormalisation group analysis. In parti- 
cular, between the two borderlines, field-theoretic techniques involving standard 

t Present address: Department of Physics, The University, Leeds LS2 9JT, UK. 

0305-4470/79/060919 + 22$01.00 @ 1979 The Institute of Physics 919 



920 I D  Lawrie 

dimensionality expansions afford an elegant and economical means of calculation. The 
dangerous operators then correspond to non-renormalisable interactions, and require 
special treatment. 

In this work, we study the particular case of tricritical scaling in d = 4 - E dimen- 
sions, which involves the renormalisation of q56 and related operators; however, the 
methods developed should be applicable to other situations of the type just described. 
(In earlier work (Lawrie 1978b) on quantal and finite-sized systems, however, the 
special nature of the crossover mechanism made it necessary to resort to less direct 
methods than those employed here.) As is well known, a simple mean field theory of 
tricritical points is obtained by minimising a free energy functional of the form 

.F= -HM+$tM2+&uM4+&vM6 (1.1) 

with respect to the magnetisation M. For the purposes of continuity with the usual 
renormalisation group approach to ordinary critical points, we suppose throughout this 
work that t is asymptotically linear in temperature, while U and U are asymptotically 
temperature-independent. In physical applications, for example to metamagnets 
(Griffiths 1973, Nelson and Fisher 1975) or to multicomponent fluids (Griffiths 1974, 
Fox 1978), different interpretations of the parameters appearing in (1.1) and cor- 
respondingly different assignments of critical exponents are normally appropriate. 
Moreover, we shall ignore the possibility of an additional term H3M3 which is required 
for a complete description of tricritical scaling. The minimisation condition yields an 
equation of state which may be written in the equivalent scaling forms 

H = M'tfi(tM-'/@t, ~M-dr/@c) = t"rH(Mt-@t, 

p -1. 

(1.2) 

& = 5 ,  A, = PBl = 2, 4, = 5. (1.3) 

where the set of classical tricritical exponents is given by 

1 - 4 3  

The variable U, which is strictly positive for thermodynamic stability, does not appear as 
a scaling variable in this description. 

The location of the various critical lines is determined by solving the simultaneous 
equations 

aH/aM = a2H/aM2 = 0. (1.4) 

t A  =HA =MA = O .  (1 .5)  

H = (tM-"', U M - ~ " )  = tAHA (Mt-', ut-*), (1.6) 

For U > 0, these equations are satisfied on the lambda line 

In this region, the equation of state may be written in an alternative form, namely 

where 

p='  2, s=3, A=ps='  2 7  *= -1 (1.7) 
are the classical exponents appropriate to the description of an ordinary critical point. 
On the other hand, for U < 0, one finds two critical loci, 

t,= 3u2/2v, (1.8) 

H,' = * ( ~ u ~ / ~ u ) ( - ~ u / v ) ' / * =  (4u2/5v)M:,  (1.9) 
which are the boundaries of the coexistence surfaces or 'wings' in the (H,  t, U )  phase 
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diagram. In the vicinity of one of these loci, a scaling form analogous to (1.6) with the 
same exponents (1.7) and the substitutions 

t +  i = t - t,, M + m  = M - M , ,  H 3 h = H - H,- iM, 

is appropriate. The linear scaling field h measures, for fixed U and U ,  the deviation from 
the tangent h = 0 to the first-order surface at the critical point. In addition, an extra 
scaling variable 

~g = uM, (1.10) 

appears, with the crossover exponent 

Q 5 =  -3. (1.11) 

Since this exponent is negative, u5 is actually an irrelevant variable, which could be 
ignored in the immediate vicinity of a wing critical point; it must, of course, be retained 
in order to recover the correct equation of state for positive U. The three critical loci 
meet at the tricritical point 

1 

Ht = tt = Mt = Ut  = 0. (1.12) 

We wish to investigate how this simple description is changed when the long- 
wavelength critical fluctuations, neglected in mean field theory, are taken into account 
by renormalisation group methods. Now, the borderline dimensionality for the critical 
loci is d" = 4, while it is believed that the tricritical point has d" = 3. Therefore one 
expects that, for 3 < d < 4, the tricritical exponents will be correctly given by (1.3), while 
the critical exponents (1.7) will be changed. The latter can be calculated in the usual 
way as power series in E = 4 - d. It is known that tricritical behaviour is associated with 
the Gaussian fixed point of the renormalisation group (see e.g. Nelson and Fisher 1975). 
On this basis, several authors (Rudnick and Nelson 1976, Lawrie 1976, Bruce and 
Wallace 1976) have attempted to study the crossover from lambda-line to tricritical 
behaviour in (4 - €)-dimensional, n -component models by setting U = 0, which is 
certainly permissible in the vicinity of the lambda line, and analysing the limit of the 
resulting theory as U + 0. It is then found that the tricritical exponents are given, not by 
(1.3), but rather by those of the Gaussian model, namely 

60 = A,/@,, do = 4 ,  (1.13) 

which coincide with (1.3) only at the tricritical borderline E = 1. Apart from this 
discrepancy, these calculations have appeared to yield acceptable crossover scaling 
functions for various thermodynamic quantities, although the condition U = 0 clearly 
cannot be utilised in the region U < 0. We shall see, however, that this appearance is 
misleading. This point has been emphasised recently by Sarbach and Fisher (1978a, b) 
who have studied tricritical scaling in the spherical model limit n + 00. In this exactly 
soluble limit, they have been able to construct sensible scaling functions with the correct 
exponents (1.3), but at the expense of introducing an extra scaling variable associated 
with the range of interactions in the lattice model which is their starting point. We shall 
investigate the Ising-like case n = 1, thereby avoiding technical difficulties associated 
with transverse modes. In this case also, an extra scaling variable is required to yield 
sensible results, and indeed the procedure of Sarbach and Fisher is readily adapted 
here, although by a manoeuvre which appears somewhat ad hoc from the field- 
theoretic point of view. 

A - 3  o - 2(1-~/6) ,  p -1 
0 - 2 ( 1 -  421, 
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The renormalisation of a field theory model corresponding to (1.1) is described in 
0 2. A scaling form for the equation of state, describing crossover from Ising-like to 
tricritical behaviour, is obtained for positive U in 0 3 and for negative U in 0 4. Finally, a 
self-contained summary of our principal results is given in 0 5 .  

2. Renormalisation of a field theory model for tricriticality 

Following the standard route, we define a field theory model corresponding to (1.1) by 
introducing the reduced Hamiltonian density (or Euclidean action density) 

X ( x )  = : ( V q 5 o ( x ) ) 2 + ~ r o q 5 ~ ( x ) + ~ U o ~ ~ ( x ) + ~ U o q 5 6 0 ( x ) + A ~ ( x ) .  (2.1) 

The subscripts anticipate the need to define new, renormalised quantities in order to 
exhibit the scaling behaviour, while the notation r of (1.1) is reserved for the quantity 
related to ro, which vanishes on the lambda line. Owing to the non-renormalisable 
nature of the 4; interaction, it is necessary to introduce operators (indeed an infinite 
number of them) other than those appearing explicitly in ( l . l ) ,  in order to carry out a 
renormalisation programme in a consistent manner. The set of these operators and their 
coupling constants is denoted by A X ( x ) .  

Renormalisation of (2.1) proceeds initially in the usual manner. One introduces a 
rescaled field 

4 ( x )  = . P 2 4 O ( X )  (2.2) 
and renormalised parameters t ,  U, v .  Their relation to the original quantities is 
determined by specifying the values of certain one-particle-irreducible vertex functions 
r("), associated with expectation values of n distinct q5 fields, at selected external 
momenta. The lambda line 

ro = roc(Uo, UO) (2.3) 

is determined by the vanishing of the inverse susceptibility 
( 2 )  2 

X - ' ( r o  = roc) = r (q  = 0; ro = roc) = 0. (2.4) 

On setting ro = roc, the tricritical point 

U0 = Uot (U0)  (2.5) 
is located by the simultaneous vanishing of the four-point function 

P4)(qi = 0; ro = roc, u0 = uOt)  = 0. (2.6) 

We shall take u0 > uOt throughout this section. 
The object of further renormalisation is to absorb ultraviolet divergent contribu- 

tions to the correlation functions into redefinitions of the field and coupling constant. 
Retaining the condition ro = roc, and ignoring temporarily the contributions due to v 0 ,  
this is achieved by imposing the conditions 

(a /a42)r (2) (q2)q2=w2 = 1, (2.7) 

P4)[pi . pi = (ai, - 2 3  = CL %, (2.8) 
which respectively determine the renormalisation coupling constant Z3 and the 
renormalised coupling constant U. In these equations, p denotes, as usual, an arbitrary 
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non-zero parameter with the dimensions of momentum. The symmetric momentum 
point in (2.8) is chosen for technical convenience, so that the net momentum flowing 
through the one-loop diagram, figure l ( a )  has magnitude F,  while the appearance of F~ 
on the right of (2.8) ensures that U is dimensionless. 

Figure 1. Graphs contributing to the renormalisation of (2.1). Wavy curves indicate 
insertions of the operator d2(x). 

It now remains to renormalise the additional divergences due to the interaction 
U&;. At first order of perturbation theory, the technique for doing this is standard (see 
e.g. Zimmerman 1971, Lowenstein 1970, Brezin et a1 1976). It is that of renormalising 
correlation functions of the d4 theory, with single insertions of 46.  This has been 
discussed by Amit (1978), while the entirely analogous renormalisation of 44 operators 
in (6 -€)-dimensional, 43-dominated theories has been explained in detail by Amit et a1 
(1977). For our case, the important result is that one must simultaneously renormalise 
all operators which, at d = 4, have the same canonical dimension as q56, namely six or 
lower. The lower-dimensional operators have already been taken care of by the 
foregoing renormalisation: the required dimension-six operators are (V24)'  and 
d3V24. All other linearly independent operators are total derivatives of lower opera- 
tors, which do not require further renormalisation. In statistical mechanical language, 
they contribute to the free energy only surface terms, which are negligible in the 
thermodynamic limit. Renormalisation of single insertions of these three operators is 
achieved by appropriate conditions on the corresponding vertex functions, namely 

, 4i = a(sii - 6lcL = CL 2-2u ,  (2.9) 

(2.10) 

(2.11) 

which define the dimensionless quantities U ,  f and A. The momentum point in (2.9) is 
again chosen so that the momentum flowing through the graph of figure l (b )  has 
magnitude F.  Differentiation of these three equations with respect to U, f and A-' yields, 
in the limit where these quantities are zero, the 3 x 3  matrix of renormalisation 
constants required by the standard renormalisation theory of composite operators. 

Even when this renormalisation has been carried out, higher-order terms of the 
perturbation series in U ,  f and A-* contain additional divergences. At order U*, for 
example, the eight-point vertex function contains the divergent contribution shown in 
figure l (c) .  In order to subtract off this divergence, we must include in A%' a term 
&wo4:.  In general, this operator will itself require renormalisation. However, we are 
not interested in examining the corrections to scaling which directly involve such 
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higher-order operators. It is therefore sufficient to set W O  equal to just that function of 
the other parameters which subtract off the unwanted divergence. This can be arranged 
by the condition 

r(’)bi . pi = $(aii - Q)@ ’1 = 0, (2.12) 

and we now have 

A 9 t = ~ A ~ 2 ( V 2 ~ o ) 2 + ~ f o ~ ~ V 2 ~ ~ + ~ w ~ ~ ~  +. . . . (2.13) 

At higher orders in U, the addition of further higher-order operators to AX will be 
necessary, and indeed an infinite number are required for a complete renormalisation of 
the theory. This is not disastrous, however. In order to calculate critical exponents 
correctly to order E ” ,  one need renormalise only graphs containing up to n loops. At 
each finite order in the loopwise expansion, only a finite number of counterterms appear 
in A%. We shall carry out explicit calculations only to first order in E .  At this order, 
further simplifications occur, since, as shown by Amit (1978), there is in fact no mixing 
of the dimension-six operators. For the purposes of investigating tricritical behaviour, 
we need only the operator d6, and it is permissible to set f = K2 = 0. When this is done, 
the conditions enumerated so far are sufficient to renormalise the massless ( ro  = roc) 
theory. 

All that now remains is to determine the parameter r, by renormalising insertions of 
the operator 42. At one-loop order, two subtractions are required, corresponding to 
the graphs ( d )  and ( e )  in figure 1. Formally, this may be accomplished by adding to the 
Hamiltonian a term p 2 t ( x ) 4 2 ( x ) ,  where t ( x )  is an external source, with Fourier 
transform f(4), and requiring 

(2.14) 

(2.15) 

After renormalisation, we may set t ( x )  = t. 
The relations between the renormalised and unrenormalised quantities are now 

completely determined to one-loop order. Each of the counterterms is proportional to 
the integral 

ddq 2 = +[1+ O(E)], I q 2 ( 4  + k )  
(2.16) 

where k is a vector of magnitude p, and the factor S = 2~”’~/(27r)”I‘(d/2) arises, as 
usual, from angular integrations. We now have 

pCL-2(ro - roc) = t ( l +  S U / ~ E )  (2.17) 

~ - ‘ ( u o - u o ~ ) =  ~ ( l  + ~ S U / ~ E ) + S U ~ / ~ E  (2.18) 
p 2 - 2 s ~ ~ =  u ( l +  15Su/2~)  

p4-3sw0 = 3 5 ~ ~ ~ 1 2 ~  

2 3  = 1.  

(2.19) 

(2.20) 

(2.21) 

Note that, owing to the final term in (2.18), U and U depend on ro as well as on u0 and c0. 
Thus the proportionality between ( ro  - roc) and t, which is exact when U = 0, now holds 
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only asymptotically as t + 0. Strictly speaking, (2.20) should also contain terms propor- 
tional to u4 and u2u. However, these terms do not contain poles at E = 0, and thus can 
be neglected at this order. 

The critical scaling properties of the correlation functions are contained in the 
renormalisation group equation 

(2.22) 

obtained by applying the operator 

(2.23) 
a a a a - - @ - f W - + Y ( j - - u  t -  rhj acL ro,uolvo  CL au av at 

to the relation 

(2.24) 

In writing down these equations, we have assumed, incorrectly, that wo is a function 
only of ro,  uo and uo. Actually, it is apparent from (2.12) that W O ,  and hence AX, 
depends explicitly on the renormalisation point p. In order to repair this mistake, one 
should treat wo as an independent variable, introducing a renormalised parameter w 
which would absorb the residual p dependence. It would then be necessary to 
renormalise this parameter correctly. This in turn would necessitate the introduction of 
further higher-order operators, which would themselves require renormalisation, and 
so on. The solution of this problem is as follows. Let us suppose that the renor- 
malisation has been carried out exactly. Equation (2.22) then involves additional 
parameters, w ,  w ' ,  . . . , corresponding to all high-order operators. One may then solve 
(2.22) by the method of characteristics, introducing the auxiliary functions @, fl', . . . . 
Since we are not interested in the corrections to scaling involving the higher-order 
operators, we then set ts, = @' = . . . = 0. The resulting correlation functions will be 
identical with those found by solving (2.22) as it stands. Elimination of the higher-order 
corrections amounts to imposing a set of conditions on the unrenormalised parameters 
appearing in the original Hamiltonian, which we are unable to write down explicitly. 
One may thus regard the differentiation (2.23) as being performed subject to these extra 
constraints, in which case (2.22) is correct. 

The functions W, U, y6 and 77 are determined by applying the operator (2.23) to 
(2.17), (2.18), (2.191, and (2.21). To order E, we find 

- 4 2  ( n )  rb"'(4i; ro, uo, uo) = z 3  r (4i ; t, U ,  U, PI.  

W ( u ) =  - E u ( l - u / u * ) ,  (2.25) 

u ( u )  = g ( l +  ~u/6u*) ,  (2.26) 

yfj(u, v)=u(2-2E+5Eu/U*), (2.27) 

77 = p- a In Z310 = 0, (2.28) 
acL 

with U* = 2 ~ / 3 S ,  and it will be useful to define the additional functions 

P ( u )  =;[2-e + T ] V ( U )  = t ( l - ~ / 2  + E U / ~ U * ) ,  

A ( u ) = ~ ( ~ - E  - ~ ) u ( u )  = ;(l - E / ~ + E U / ~ U * ) ,  

* ( U ) =  - v ( u ) y S ( u ,  u ) / u  = - (1 -€+86U/3~*) .  

(2.29) 

(2.30) 

(2.31) 
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As usual, the critical exponents of the Ising-like fixed point U = U* are given by 
v = v(u*), = P ( u * ) ,  etc, while those of the Gaussian fixed point are vo = v(O), 
Po = P(O),  etc. The exponents 9 =*(U*) and q0 = 9(0) govern the corrections to 
scaling due to the operator 46, which will appear in terms of the scaling variable 

ut-* = (2.32) 

In particular, near the Ising fixed point we have 

q =  - [ 1 + $ E + 0 ( € 2 ) ] ,  (2.33) 

which agrees with the calculation of Amit (1978), although Amit expresses his result in 
a somewhat different form. 

It should be remarked that a rather more complicated set of equations will be 
obtained at higher orders in E .  In the first place, it will be necessary to consider the 
mixing of the dimension-six operators. When the parameters ( v ~ ,  02, u g )  = ( U ,  f ,  A-') 
are very small, the term 7 6  a / a u  in (2.22) will be replaced by 

(2.34) 

Diagonalisation of the matrix yii will then guide the set of exponents 'Pi governing the 
corrections due to these operators. In (6 -€)-dimensional d 3  theories, mixing of 44 and 
related operators already occurs at the one-loop level, and, in this context, some 
technical considerations concerning the diagonalisation of yii, the identification of 
eigenoperators, and the consequences of equations of motion have been discussed by 
Amit et a1 (1977). These considerations are not important for the present calculation. 

Secondly, the functions defined by ( 2 . 2 9 4 2 . 3  1) will themselves depend on the vi, 
making the solution of the renormalisation group equation more complicated. They 
may also depend on t. At this order, the t-dependent term in (2.18) does not affect 
W ( U ) ,  owing to cancellation between the various derivatives in (2.23). A proof that 
such cancellations occur at all orders would be interesting, but we have not succeeded in 
producing one. 

In order to discuss scaling behaviour near the tricritical point, we must add to the 
Hamiltonian (2.1) a magnetic field term - Ho40(x).  The corresponding renormalised 
dimensionless parameter H is given by 

Ho&(x) = p3- ' / 'H4(x) ;  Ho = p 3 - ~ / 2 z ; 1 / 2 H .  (2.35) 

The part of the free energy depending directly on H is given in terms of the 
dimensionless magnetisation variable 

(4) (2.36) 
by 

M = p e / 2 - 1  

1 
P ~ F ( M )  =I T(pl-E/ZM)nr(n)(ql = 0 ;  U, V ,  t, &). (2.37) 

Since p is the only dimensional parameter appearing in the renormalised theory, it 
may be factored out of the correlation functions when these are evaluated at zero 
momentum. It then appears on the right of (2.37) only as an overall factor pd,  and 
F ( M )  is itself dimensionless. Using (2.22), and multiplying throughout by v(u), we 
obtain for the derivatives 

F(n' (M)  = dnF/aMn (2.38) 

n n .  



Tricritica 1 scaling 927 

the renormalisation group equation 

( t  a l a r  - v W a l a u  +*U a /av  +@M alaM + np - dv)F'") = 0. (2.39) 

In particular, the equation of state is given in scaling form by 

H = P ( M ) ,  (2.40) 

with 

@(u)-dv(u)=  -A(u), (2.41) 

while the inverse susceptibility is 

x-l = P ( M ) ,  (2.42) 

with 

~ @ ( u ) - ~ v ( u )  = - Y ( u ) .  (2.43) 

These equations form the basis for the analysis in the next two sections. 

3. Tricritical scaling: U 3 0 

In this section, we obtain to order E a scaling form for the equation of state, which 
exhibits the crossover from lambda-line to tricritical behaviour. To this end, we 
integrate (2.39) with n = 1 by the method of characteristics. This yields 

H ( u ,  U, t, M )  = Itj'A'H(U, a, t l ~ t ~ ,  AT), 

t aU/at = v ( U )  W(U), (3.2) 

t aalat  = - ~ ( U ) C ,  (3.3) 

t aAT/at = --@(U)&?, (3.4) 

(3.1) 

where the auxiliary functions U, 6, and A? are defined by 

with the boundary conditions E ( t  = 1) = U, a( t  = 1) = U, M ( t  = 1) = M. 
The prefactor in (3.1) is given by 

and has the limiting behaviour, 

ltl"' = ltlA0, for U = 0, (3.6) 

ltl'A'= (t lA,  for U = U*, (3.7) 

It((A)= ( t iA,  as t + O  with u >0, (3.8) 

U = U*Z/(l +z),  (3.9) 

At first order in E ,  but only at this order, (3.2) may be solved explicitly for U, yielding 

with 

(3.10) 
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Crossover from Ising-like to Gaussian behaviour is conveniently expressed in terms of 
the function 

X(lt1, u ) = l t l f / 2 c / u  = [ ( l + z ) ( l - u / u * ) ] - l ,  (3.11) 

which satisfies the differential equation 

t a In x/at = - i E l z / a  In x/az = &c /u* ,  (3.12) 

and has the limiting forms 

(3.13) 

(3.14) 

(3.15) 

The form (3.1 1) does not appear to be universal, owing to the residual dependence on U. 
However, X always appears in combination with other quantities, and the factor 
1 - u / u *  can always be absorbed into appropriate non-linear scaling fields, yielding 
scaling functions which are completely universal in form. Procedures for doing this 
have been indicated elsewhere (Lawrie 1977) and will not be discussed in detail here. 

9 (3.16) 

In terms of X, we have 
l f l ( A )  = lt13(1-f/6)/2x1/2 - - j t ) A o X 2 ( A - A o ) / c  

(3.17) 

(3.18) 

In order to exhibit the scaling form of the equation of state, one must now evaluate 
the free energy explicitly to one-loop order, and make the substitutions indicated in 
(3.1). Before doing this, it will be useful to have in hand an alternative formulation, 
using M rather than t as the basic scaling variable. On dividing (2.39) by @ ( U ) ,  and 
following a procedure precisely analogous to the preceding one, we obtain 

H ( u ,  U, r, M )  = IMlbH(zi, 6, I ,  M/IMI) (3.19) 

where, to order E, we have 

6 = 6 0 = 3  +€. (3.20) 
Noting that, to order e, 

dolPo = do/@ = E, (3.21) 

we obtain for the characteristic functions 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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We now use (2.37) to calculate the free energy to one-loop order. One must sum the 
contributions from all graphs containing arbitrary numbers of insertions UM’ and uM4, 
arranged in a single loop. Taking into account the combinatorial factor associated with 
each such graph, we have 

( m + n - l ) !  
m!n! ?i m,n ( - l m + n + l  

(3.26) 

which yields 

F ( M )  =$tM2+huM4+uM6+$ ddq In[l + ( ~ u M Z + h u M 4 ) / ( q 2 + t ) ] - C ( M ) ,  (3.27) 

where 
J 

(3.28) 

denotes the contribution from counterterms subtracted in 0 2, and f is a unit vector. On 
performing the loop integrations, the equation of state may be written, to order E, as 

(3.29) H = tM+kuM3+huMS+(~/6u*)(uM+huM3)7 In T 

with 

7=t+$uM2+hvM4. (3.30) 

The scaling form is now obtained by making the substitutions (3.1) or (3.19). In the 

(3.31) 

with i defined in the analogous way, in terms of U’ and v’. As an illustration of the 
relation between the two formulations, let us set U = U* and U = 0. In terms of the 
variables 

latter case, we obtain 

H / M s  = i+ku’ +$6+ (c/6u*)(L +kc); In ?, 

(3.32) y 2  = u*M21t/-’@, = (U*)-l/’PflMI-l/P 

we obtain, on exponentiating the logarithm, 

(3.33) 

(U *)-(1+f/2) H = I M ~ ’ [ - $ + ( $ + x ) ~ - ’ ] .  (3.34) 

For small y, (3.33) is analytic, while the large-y behaviour reproduces the leading power 
in (3.34). Of course, (3.33) and (3.34) are identical only when the values of the 
exponents are substituted and the whole expressions expanded to order E .  Each form 
then reproduces (3.29) with U = (U - U*) = 0. When U # 0, corrections appear in terms 
of the variables C/(u*) ’  or ;/(U*)’, and one sees that the loopwise expansion yields 
scaling functions as power series in E only if U is formally regarded as O(E’). 
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It is clear that, near the lambda line, (3.31) yields a correct scaling description, with 
corrections appearing in the form 

( U  - U * ) I M I - ' u / B ,  vIMI-yIP, (3.35) 

with 

f#Ju = -$E + O ( E 2 ) ,  (3.36) 

while the analogous expression obtained from (3.1) yields corrections varying with the 
appropriate powers of t. It might appear that our equations also describe directly the 
crossover to the tricritical point U = 0, with tricriticality governed by the Gaussian 
exponents Po, Ao, q50, etc, in which case our analysis would be complete. However, this 
appearance is easily seen to be misleading; indeed, if one sets U = 0 in (3.31) to 
investigate the ordered region t < 0 of the symmetry plane H = 0, one finds 

it+; + 0 ( C 2 )  = 0 ,  (3.37) 

or 

z - ( M J 1 / @ o U / M J - Y o ' @ o / y  = - vM4/5!. (3.38) 

Thus, on approaching the tricritical point in the ordered region, the relation between t 
and M is governed, not by the Gaussian exponent Po as suggested by (3.31), but rather 
by the classical tricritical exponent Pt=a, as in (1.2). In order to give a satisfactory 
account of the approach to tricriticality, we must therefore ask whether our equations 
can be rewritten in a form involving the classical tricritical exponents listed in (1.3) and 
in which, near the tricritical point, v appears as a constant rather than as a scaling 
variable. For notational convenience, avoiding the ratios f#J/P and V/P, we consider 
equation (3.1) which, to one-loop order, reads 

H/ltI4' 1 - ~ / 6 )  - _ ~ l ~ l - f ( l - . / 2 ) ~ 1 / 3 + 1 -  3! U ~ 3 1 t  I-z(1 - C / 2 )  + h v ~ 5 1  / - $ ( 1 - ~ / 6 ) x  15/3 

+ (E/6U*)(~Mltl-f(l-E/Z)X1/3 + ~ v ~ 3 1 t l - t ( 1 + . / 2 ) ~ 1 6 / 3  )? In 7, (3.39) 

where X(t, U )  is still given by (3.11) and 

On multiplying (3.38) by (tlf'l-", we obtain 

7 = 1 + 4 U M 2 1 t l - ( 1 - f / 2 ) X - 1 / 3 + _  4'1 v ~ 4 1 t  I-'x l4l3.  (3.40) 

~ / l t 1 5 / 4  = ( ~ l t l - ' / 4 ) X 1 / 3 + L  3 ! U  - 1  tl -?(I-*) (Mltl-1/4)3+hv(Mltl-1/4)5x15/3 
+ (E/6U *)lt/f"-f)[a ~ ~ ~ - f ( 1 - f ) ( ~ ~ ~ ~ - 1 ~ 4 ) ~ ' 3  

+ ~ v ( ~ l t l - ~ / ~ ) ~ ~ ~ ~ / ~ ] ?  ln 7, (3.41) 

with 

7 = 1 *~Ultl-f"-"(Mlt1-'/4)2x-l/3 + h v ( M l t l - ' / 4 ) 4 X ' 4 / 3 *  (3.42) 

We appear to have reached a dilemma! On the one hand, equations (3.31) and (3.39) 
obtained by direct solution of the renormalisation group equation have the formal 
appearance of scaling, but with physically inappropriate exponents. On the other hand, 

which are equal to unity only on the tricritical borderline E = 1. Essentially the same 
difficulty has been encountered recently by Sarbach and Fisher (1978a, b), who study 
tricriticality in a generalised spherical model, which is roughly equivalent to (2.1) in the 

(3.41) embodies the correct tricritical exponents, but fails to scale factors of It( ;U-€) , 
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many-component limit. Their resolution of the dilemma consists in having the foresight 
to include in their original formulation an additional variable p which, on being assigned 
the scaling exponent 

cp p =--' 2(1-e), (3.43) 

precisely absorbs the residual dependence on t. (Actually, the exponent they define 
corresponds, in our notation, to cpP/cpt = - (1 - E ) . )  The same parameter may be 
introduced into our equations by the following ad hoc manoeuvre. We modify the 
Hamiltonian (2.1) by writing 

X ( x )  = $p-2/d[vcp , (X)]2  + , . .. (3.44) 

From the field theory point of view, p is a spurious variable, since it can be removed by 
simple rescaling, provided that it is finite and non-zero. For this reason, it does not 
necessitate any further renormalisation. However, its introduction will permit us to 
retain the formal appearance of scaling, now with the correct classical tricritical 
exponents, while obtaining also scaling functions with a physically sensible behaviour in 
the ordered region of the symmetry plane. Moreover, one can give p a sound physical 
interpretation, if one imagines constructing (2.1) from an underlying lattice model in 
which the lattice spacing is denoted by a and the range of interactions by Ro. In that 
case, one has (Fisher 1974b, Sarbach and Fisher 1978a, b) 

P - ( a / R d d .  (3.45) 

In the limit of long-range interactions, p + 0, spatial fluctuations in 4 ( x )  are damped 
out, and one recovers the classical theory, as one should. 

The net effect of the replacement (3.44) is to replace U *  in (2.25)-(2.31) and all 
subsequent equations by 

U * * U * / p .  (3.46) 

Using t as the basic scaling variable, we have 
cr = /p-f) U - = u*z,/(1+ Z"Z,), (3.47) 

where, now, one has 

and 
2, = p l t p ,  

(3.49) 

(3.50) 

while cpp is given by (3.43). The equation of state, (3.41) with (3.42), now takes the 
scaling form 

H/  I rl = MX1l3 + h A ? l  + &vM:X: + (€16 u*)~,(zi,A?~X''~ + $ h?:X16'3)7 In 7 

(3.51) 

(3.52) 
and 

(3.53) 
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These equations, together with an analogous modification of (3.31), constitute our final 
result for tricritical scaling with U 5 0. In the limit p = z,  = 0, we have X = 1 and, as 
anticipated, the classical theory outlined in the Introduction is recovered. Since (3.39) 
has been modified only by the introduction of p ,  and by a redistribution of powers of t, 
the correct behaviour near the lambda line, which was manifest in (3.31) and (3.39), is 
automatically regained by setting p = 1 or, equivalently, by an appropriate rescaling of 
variables. In the disordered region of the symmetry plane, H = 0, t > 0, one may again 
eliminate p to reproduce the crossover to Gaussian tricritical behaviour found in 
previous analyses. At higher orders in E, the scaling functions thus obtained will contain 
additional corrections to scaling involving U as an irrelevant variable, governed by the 
exponents W and Po of (2.31). Presumably these corrections are also contained in the 
work of Sarbach and Fisher, who do not, however, give them explicitly. 

4. Tricritical scaling: U s 0 

We now examine the scaling behaviour near the critical loci [ r ,  HI = [ tc(u,  ti), H,' (U, U)] 
with U 0, and the crossover to tricritical behaviour as U + 0-. For brevity, we shall 
initially set p = 1; however, p may be reintroduced at a later stage via (3.45). As a first 
step, we locate t, and M,, using (3.29) and the conditions 

aH a2H 
aMI, aM4. 
- =- =o.  (4.1) 

These conditions are satisfied when 

t + $ U M 2  + &vM4 = uM + htiM3 = 0 ,  (4.2) 
which yields 

t, = 3u2/2v, (4.3) 

M: = * ( - ~ u / u ) * ' ~ ,  (4.4) 

H,' = (4u2/5u)M:. (4.5) 

while substitution in (3.29) gives 

We see that these results are formally identical with (1.8) and (1.9), obtained for the 
classical theory, although, of course, U and U are now renormalised parameters. It is not 
clear whether this attractive feature will persist at higher orders. 

In order to find the fixed point governing one of the wing critical lines, we make the 
change of variable 

(4.6) 4 ( X I  3 4 ( X I  +Mc 

with M, = M:, say, and introduce the new temperature parameter 

i = t - t J U ,  t i ) .  (4.7) 

For U > O ,  the renormalisation scheme of 0 2 was carried out in the symmetry plane 
H = 0, while correlation functions valid for arbitrary values of the magnetic field could 
be constructed from those of the symmetric theory via (2.37). In the present case, the 
analogous procedure is to eliminate the term linear in 4(x) introduced by the shift (4.6). 
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Thus we add to the Hamiltonian a term - (H,  + iMC)4(x ) ,  with H, = H r .  That is, we 
restrict ourselves temporarily to the surface tangential to the wing at the critical line, by 
setting the linear scaling field 

h = H - H , - i M , ,  (4.8) 

introduced in 5 1, equal to zero. 
Apart from an unimportant constant, the Hamiltonian now reads 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

Note that H30 consists of just those counterterms required to ensure that 

p 3 y q i  = 0 ;  i = 0) = 0, (4.17) 

and that insertions of id2  in the same vertex function are correctly renormalised. Since 
the changes of variables (4.6) and (4.7) do not involve any divergent quantities, the 
theory defined by (4.9)-(4.15) should already be correctly renormalised. Indeed, on 
introducing 

Li = -2u, (4.18) 

Lis = UM,, (4.19) 

and, for consistency, 

v = U, (4.20) 

the relations (4.10) and (4.12) assume the same forms as (2.17) and (2.18) respectively, 
while (4.13)-(4.16) may be rewritten as 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

One may check explicitly that precisely these relations are obtained by renormalising 
(4.9) along the lines of 5 2. 

The free energy deviation 

P(m) = P ( M  -Mc)  = F ( M )  -F(M,)  (4.25) 
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and its derivatives satisfy the renormalisation group equation 

(4.26) 

where v(u), W(zi), and p(Li) are the functions defined in 0 2, while the remaining 
coefficients are given by 

vy.5 = (1 - E -I- 8€U/3U*)V 4- 5 € U : / 3 U *  = - q ( U ) V  + 5 € U : / 3 U * ,  (4.27) 

'4'5= - i ( l -z~ + 7 ~ L i / 2 ~ * ) .  (4.28) 

The exponent YS governing corrections to scaling due to the operator C#J~ near the 
Ising-like fixed point U = U* associated with the wing critical line is given by (4.28) as 

'4' 5 - _ -  - :(1 + 2E + O ( 2 ) ) .  (4.29) 

It should be remarked that (4.25) is not merely a trivial rewriting of (2.39), since the 
differentiation is now subject to the extra constraint Lis0 = constant, which gives rise to 
the additional corrections to scaling with the exponent q5. Also, (4.25) does not 
contain corrections associated with &30: the operator (63 is redundant, in the sense of 
Wegner (1974). 

Solution of (4.25) follows exactly the path of 0 3. In terms of the linear scaling field h 
defined in (4.8), we have for the equation of state 

(4.30) h(u ,  u5 ,  zj, i., m )  = Iil(*)h(d, lis, C,i/Ii.l, E). 
Scaling of Li and m is exactly as before, and we have 

U ' =  u*i/(l  + Z ) ,  (4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

The form of 0' is modified by the second term in (4.27), and the analogue of (3.18) 
becomes 

v' = V/li/(w) + 5; :  - I)/;, (4.36) 

(4.37) 

In order to write the equation of state in scaling form with the correct tricritical 
exponents, it is necessary once again to introduce the variable p via (3.45). In analogy 
with (3.46)-(3.49), this yields 

;, = \ i l-( l-f)/z d = U * i , / ( l  +Z&)  

x = [(l +Zuip)(l- Lip /u*) ] - l ,  

(4.38) 

(4.39) 
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with 
2, = ( u / u * ) p / ( l -  rip/u*), (4.40) 

2 ,  = p p p ,  (4.41) 

and 4, and 41 defined respectively by (3.42) and (3.50). Corrections due to u5 now 
appear in terms of the scaling variable 

= ~ 5 ~ ~ ~ - ~ 5 ~ ,  (4.42) 

where, as expected, the exponent 
q) -1 

51 - 4  (4.43) 

agrees with the corresponding Gaussian exponent (cf (4.27)) 

(4.44) 

only on the tricritical borderline E = 1.  Since the exponent " 5 1  is positive, we see that 
the operator 45 is actually relevant at the tricritical point. This is to be expected, since 
its canonical dimension is lower than that of 46. Of course, its coupling constant 
us = vM, vanishes at the tricritical point, as it must. It is also convenient to introduce the 
quantity 

3 
9 5 0 =  - - $ ( b Z E )  

tir = ~ + 5 z ; , p 3 ( ~ - 2 / 3  - l)/fir = 14-1X-16/3$. (4.45) 

The equation of state then reads 

h / l i l ~ ,  = r i i ~ 1 / 3 + i ~  3 !  u,m - 3  + hi5 ?X + &tir* :X5  

+ (~ /6u*) i , ( t i , t i i J i~ /~  +4i5rrii:X11/3 +$ti1rii:X16'3)t In 4, (4.46) 

(4.47) 

(4.48) 

As one might expect, these equations have the same form as (3.51)-(3.53), apart from 
the additional terms involving us.  Of course, (3.51) and (4.46) are two different 
representations of the equation of state, obtained by solving the inequivalent renor- 
malisation group equations (2.39) and (4.25). They are equal only in the sense that, 
when expanded to order E, both reproduce (3.29). However, in the plane U = 0, we have 
H = h, M = m, u s  = 0, i = t and X = X = 1. The two equations (3.51) and (4.46) are 
then identical. Thus the results of this section are complementary to those of Q 3 and, 
taken together, the two expressions for the equation of state yield a consistent 
description, in scaling form, of crossover from the tricritical point to each of the critical 
loci. 

with 
4 = 1 +;f i r r i i ; * -1/3 +$25JiirX3 +&v,riit;lX14/3, 

and 
fir = m l i l - f i t  = m li/-1/4. 

5. Conclusions 

We have used the methods of renormalised perturbation theory to investigate tricritical 
scaling in the (4 - €)-dimensional field theory model defined by the Hamiltonian 
density 

R = & ~ ~ ) ~ + + t ~ ~ + ~ ~ ~ ~ + & v ~ ~ + c o u n t e r t e r m s .  (5.1) 
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The interaction ~ 4 ~ ,  which is essential for thermodynamic stability in the region U C 0, 
is non-renormalisable in the sense that counterterms proportional to an infinite number 
of higher-dimensional operators (V24)*,  43V24, d6, 4l0, . . . are required to effect a 
complete renormalisation of the theory. In practice, however, renormalisation is a 
perturbative process, which is most systematically performed by considering, at each 
step, only Feynman graphs containing a given number of loops. In the E expansion, 
which we have used throughout, critical exponents may be calculated to order E “  by 
considering only those graphs containing up to n loops. Scaling functions calculated by 
means of the loopwise expansion may likewise be presented as power series in E ,  

provided that one formally regards U as being of order E * ;  in practice this means that the 
quantity u / u * ~ ,  where U *  = O ( E ) ,  is treated as being of order unity. At each finite order 
in the loopwise expansion, only a finite number of operators of higher dimension need 
be introduced, provided that corrections to scaling due to these operators themselves 
are neglected. Within these restrictions, a correct treatment of (5.1) involves only a 
straightforward extension of standard field-theoretic techniques. Our procedure is 
described in detail in 9 2. In fact, the renormalisation of single insertions of composite 
operators such as 46 is well understood (see e.g. Amit et a1 1977 and references 
therein), and at first order in U our procedure is equivalent to the standard theory. 

Detailed calculations have been carried out to one-loop order. At this order, 
considerable simplifications arise, since there is no mixing of C#16 with other dimension- 
six operators; the only additional operator explicitly required is 4’. For small positive 
U, we find, as expected, that the equation of state can be written in the form 

(5.2) H = jt/AOR(M/tl-@,, Ultl-do, U I t l - o o ) ,  

H = IMlboti(tlM/-l’@~l, uIMI-+O’@o, UIMI-\lro’@o), 

or 

(5.3) 

where the Gaussian tricritical exponents Ao, Po, etc are those listed in (1.13). While 
these equations have the formal appearance of scaling, the Gaussian exponents are in 
fact misleading as to the actual tricritical behaviour of the system. This is most clearly 
seen by considering (5.3) in the ordered region of the symmetry plane. On setting 
H = U = 0 with t < 0, we find for small t and A4 that 

t = - U/M1”@,, (5.4) 

P I  = P o / ( l - 9 o i  = a, 
where 

( 5 . 5 )  

belongs to the set of classical tricritical exponents (1.3). These, therefore, are the 
exponents which describe the true tricritical behaviour, and should appear in (5.2) and 
(5.3). Following the spherical model calculation of Sarbach and Fisher (1978a, b), we 
find that the equation of state can be rewritten in a form involving the physically 
appropriate classical exponents (1.31, but at the expense of introducing an extra scaling 
variable p which appears in our formulation as the coefficient of (VC#I)2 in the Hamil- 
tonian 

(5.6) 

Since p can be eliminated by the rescaling of variables, it does not necessitate any 
further renormalisation. As discussed by Sarbach and Fisher, and in 9 3 above, p can be 
interpreted in terms of the range of pairwise interactions in an underlying lattice model, 

z9=l - 2 / d  
2p (v4)2+ . . . . 
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In the long-range limit p + 0, spatial fluctuations in 4 are damped out, and the purely 
classical theory is regained, as it should be. The equation of state is thus most 
appropriately written in the form 

H = ~ t ~ A ~ R ~ ( M l t ~ - ’ ~ ,  ultl-’t, Pltl-’”), 

($ p = - L  2(1-E), (5 .8)  

(5.7) 

where 

and U appears simply as a constant. Near the lambda line, our equations may again be 
rewritten in terms of the usual Ising-like exponents, with corrections appearing in the 
form 

(U -u*) l t l -b”,  UItl-*, (5 .9)  

where 

4“ = -& + 0 ( E 2 ) ,  9 = - (1 + $€ + 0 ( E 2 ) ) .  (5.10) 

For U G 0, we find two critical loci, 

t,= 3u2/2v, Hf = * ( ~ u ~ / ~ ~ ) ( - ~ u / u ) ” ~ = ( ~ u ~ / ~ u ) M I  (5.11) 

which are the boundaries of two symmetrically disposed first-order surfaces or ‘wings’. 
On shifting the spin field according to 4 3 4  +M,‘, we obtain a new, correctly 
renormalised theory involving the new parameters i = t - t,, U = - 2u, and the addi- 
tional variable 

l i s  = UM,‘ (5.12) 

associated with the operator 4’. Critical behaviour along the wings has the usual 
Ising-like form, governed by the fixed point U = U*, where U* is the same number as that 
appearing for U > 0, but with additional corrections of the form 

l is Iil+s, (5.13) 

with a negative, irrelevant crossover exponent 

9 5 =  -i(1+2E+O(E2)). (5.14) 

Crossover to tricritical behaviour is described by an equation analogous to (5.7), with 
the substitutions H + h = H - H ,  - iM,, M + M - M,, t + i, U + U,  but involving again 
the additional scaling variable 

2 5 1  = u51il-y5f, (5.15) 

with 

(5.16) 

The two representations (3.51) and (4.46) for the equation of state, valid respec- 
tively when U is positive or negative, are obtained by solving two different renor- 
malisation group equations, and coincide precisely only when expanded to order E. 

However, they are identical in the plane U = 0, and together yield a consistent 
description of crossover from the tricritical point to each of the critical loci. It should be 
remarked, however, that we have not succeeded in giving a fully complete account of 
scaling in the tricritical region. The reason is that, in order to locate the fixed point 
describing one of the wing critical lines for U > 0, we wrote the free energy in terms of 

9 -1 
5r - 4. 
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the magnetisation deviation m = M -M:. Now, while the expression (3.27) for the 
free energy obtained directly from perturbation theory is symmetric about M = 0, or 
m = -M:, the scaling form (4.46) for the equation of state obtained in the last section 
by solving the renormalisation group equation to order E does not have this symmetry. 
Thus, although our equations describe crossover from the tricritical point to each of the 
wing critical lines separately, we have not been able to exhibit a single scaling function 
describing crossover to both critical lines. One must, of course, enforce the symmetry 
by restricting (4.46) to the region H > 0 and using the corresponding form with the 
replacement m 3 m’ = M - M ,  in the region H < 0. However, this yields an unphysi- 
cal singularity in the equation of state at H = 0, and we must conclude that our results 
are valid only in the immediate vicinity of the critical line. 

Finally, we illustrate our results by plotting contours of the susceptibility for small, 
negative values of U. For this purpose we set d = 3 or E = 1.  This is actually not strictly 
appropriate, since one expects to find logarithmic corrections to the classical tricritical 
behaviour in three dimensions, owing to the marginal nature of 46 (Stephen etall975). 
These corrections are not reproduced by our E expansion technique. Furthermore, we 
take ri sufficiently small that factors of 1 - u / u *  can be set equal to unity. Next, we 
introduce the rescaled variables 

H’ = HI H,, (5.17) 

m’ = m/M,, (5.18) 

t‘ = t / t c  = (i + t,)/t,. (5.19) 

After these rescalings, the equation of state (5.7), whose explicit form is given in (4.46), 
depends, at E = 1, on a single, non-universal parameter 

2) = p v ’ / 2 / u * .  (5.20) 

A discussion of this non-universal dependence in the spherical model limit has been 
given by Fisher and Sarbach (1978). For our present illustrative purposes we set z ’  = 1 :  
the limit z’ = 0 of long-range interactions yields, as discussed above, the mean field 
theory described in the Introduction. 

At this point, the equation of state describes a plane U = constant for small, negative 
U in the (H, t ,  U )  phase diagram. The bold line in figure 2 represents, for HI> 0, the 
wing coexistence surface, along which the free energy 

F’(m’) = I H’(m“) dm“ 
m’ 

(5.21) 

has two equal minima. It terminates at the critical point (H’,  t ’ )  = (1, 1). Also shown in 
figure 2 are contours of the inverse susceptibility, which is conveniently normalised by 

x-‘( t ’ ,  H I )  = fiaH1/am’. (5.22) 

0 

In mean field theory this normalisation yields 

X & ( t ’ ,  0)  = t ‘ .  (5.23) 
A technical difficulty in computing these contours is that the scaling form (4.46) for the 
equation of state does not have the required analyticity properties for large values of 
y = m//ilBi. As discussed in 5 3, one must use the alternative form 

h = tn%(r / l tnl l”~)  (5.24) 
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I 1 1  

O L  oa 12 16 
H‘ 

%o 

Figure 2. The (H’, t’) phase diagram for small, negative U and H’>O. The coexistence 
surface (bold curve) and contours of the inverse susceptibility (light curves) are shown to first 
order in c, with e = 1. 

H 

Figure 3. The (HI, f ’ )  phase diagram for negative U, with contours of the inverse suscep- 
tibility, calculated from mean field theory. 

Figum 4. Schematic representation of the tricritical (H, r, U )  phasediagram. Shaded areas 
are the coexistence surfaces, bounded by the critical lines OA (the lambda line), OB and 
OC, while the broken line OD is a line of triple points. The vertical section indicated by a 
dotted rectangle is reproduced in the inset, and the right-hand half of this plane appears in 
figures 2 and 3. 
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when y is large. In particular, this is necessary to avoid spurious singularities in the 
susceptibility as t + t,, with m # 0. Fortunately, contours evaluated from the appro- 
priate forms of the equation of state in different regions can be smoothly matched and, 
to avoid confusion, this matching has not been indicated explicitly in figure 2. 

As expected, the contours do not behave in the correct manner for small H ’ :  they 
meet the H’ = 0 axis at a finite angle. In fact, they are probably reliable only near the 
critical point, and only this region has been mapped out in detail. For comparison, the 
corresponding diagram for mean field theory is shown in figure 3. Here, by contrast, the 
contours, which may be obtained analytically, meet the H ’  = 0 axis with zero slope, and 
the symmetry about this axis is, of course, maintained in a perfectly analytic manner. 
For orientation, the full tricritical phase diagram is sketched in figure 4. 
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